

Prototype HyspIRI-TIR (PHyTIR) Test Results

William R. Johnson and PHyTIR Team

Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, USA 91109-8099

Optical Prescription

 Optical Prescription: Three-Mirror Anastigmat Telescope with Scan Mirror

Optical Prescription

PHyTIR Optical Design Parameters							
Effective Focal Length*	415.3mm						
Speed	F/2						
Aperture Size	207.7mm						
Pixel pitch	40µm						
IFOV	96.308µrad (single pixel)						
FOV	1.4126° (along track scanning)						
Dwell time	32µs						
Spectral coverage	3.5µm to 12.5µm						
Optical MTF _{Nyquist}	50% polychromatic, all fields (no spider)						
Scan mirror rotation rate	14.15rpm (double sided scan mirror)						
Altitude*	623km						
FOV*	51° (cross track scanning)						
Cross track pixels*	9287						
Swath*	596km						
Swath overlap*	10% along track pixels						

* HyspIRI-TIR specific

• PHyTIR optics consists of 6 reflecting surfaces, 4 transmitting surfaces. (5 mirrors, 2 windows)

- Optics and baffles will operate in an ambient environment (approximately 295K).
- Focal plane assembly (including cold stop) will operate at 60K.
- All reflective optics are aluminum with optical surfaces overcoated with protected gold (> 98% reflectance). Transmissive window will use BBAR coated ZnSe ($\tau > 95\%$). Non-optical, baffles and contact surfaces will be coated with appropriate thermal coatings.
- Cold stop to be polished aluminum facing focal plane and black facing optics.

PHyTIR Prototype

Baseline Calculated Performance

HyspIRI-TIR Focal Plane Model Assumption Summary										
	Wavelength (μm)	Bandwidth (^μ m)	Well Size (Me-)	QE	Read noise (e-)	Dark Current (e-)	Optics Transmission (%)			
Band 1	3.98	0.015	6.79	0.7	876	235	0.5			
Band 2	7.35	0.32	6.29	0.7	876	235	0.63			
Band 3	8.28	0.34	6.55	0.7	876	235	0.63			
Band 4	8.63	0.35	6.63	0.7	876	235	0.63			
Band 5	9.07	0.36	6.65	0.7	876	235	0.63			
Band 6	10.53	0.54	8.8	0.7	876	235	0.63			
Band 7	11.33	0.54	8.3	0.7	876	235	0.63			
Band 8	12.05	0.52	7.5	0.7	876	235	0.63			

PHyTIR test results

Measured Quantum Efficiency

This plot shows QE measured on a Process Evaluation Chip (PEC) detector fabricated on the same MBE layer as the SCA detector array.

Measured Focal Plane Dark Current

7-6-2	PHyTIR_SCA_17294_Data_V3.sls														
ome Insert Page Layout Formulas Data Review View Get Started Acrobat															
Cut	Arial	* 10	• A *	= = •		📑 Wrap Text	Gen	erai				Normal	Bad	Good	Neutral
Copy Format Painter	BI	U · 🖽 ·	<u>ð</u> - <u>A</u> -		(# (#	🔡 Merge & Center	- 5	- %, ,	M .A	Conditional Formatting *	Format as Table -	Check Cell	Explanatory	Followed Hyp	Hyperlink
board G		Font	- 6		Aligne	nent	G	Numbe	r G				2	lies	
102 - 5 fr															
B		С	0)	E	F	G		н	1	J	K	L M	N	0 P
Dark current is calculated from the difference between signals measured at two different integration times. A transfer gain of 575.2 e-/ADU was used to convert the measured signal difference to units of e-/sec as discussed in the Gain page. The median value 1.05 E9 e-/sec at 60.3K cold finger temperature is in approximate agreement with the value 7.87 E8 e-/sec reported for SCA 17201. A calculation of the expected blackbody flux in the 2-13.5 micron IR band for f/0.5 illumination from the cold shields at different temperatures is shown below.															

The dark current was measured to be ~183e- which <u>exceeds</u> the performance of the current baseline estimate of 235e-

Measured Focal Plane Well Size

HyspIRI-TIR focal plane array well depth measrement									
Parameter Band 1 Band 2 Band 3 Band 4 Band 5 Band 6 Band 7 Band 8 r									units
System Transfer Gain	574.2	550.5	550.5	573.5	574.0	733.3	705.5	656.6	e/adu
Rail to Rail Signal Swing	10825	10825	10825	10825	10825	10825	10825	10825	ADU
Rail to Rail Well Depth	6.22E+06	5.96E+06	5.96E+06	6.21E+06	6.21E+06	7.94E+06	7.64E+06	7.11E+06	e

The well depth was measured by taking the signal difference between a saturated and a starved frame multiplied by the gain is the well depth in electrons. The values are within the range expected for the HyspIRI-TIR array. Both Band 6 and 7 have the significant increase expected.

System measurement: Saturation temperature

PHyTIR Saturation Test

Demonstrates that long-wavelength bands (8 and 12 μm in PHyTIR) do not saturate below 480 K, as required.

System measurement : Noise equivalent delta temperature (NE∆T)

Pixel temperatures retrieved in each band with 25 C blackbody, 10 minutes after calibration at required readout speed. PHyTIR would normally be calibrated every 2 seconds. Demonstrates yield (99.8 % response) within columns needed to define a spectral band and that PHyTIR meets S:N specification.

System measurement : Noise equivalent delta temperature (NE∆T)

test temp	range: 8C to 480							
		Comments						
	12 ^µ m band			81	^I m band			
Gain	ADU	neΔt		ADU	$NE^{\Delta}T$		$\Delta au_{ m noise}$	
125	32.2484	2108.632	mk	57.5	1182.609	mk	1.7	12.37 bits total over full dynamic range
250	151.719	500.9261	mk	274.6875	276.678	mk	1.9	
375	279.0458	301.0259	mk	501.7813	167.4036	mk	2.1	
500	402.8105	223.4301	mk	724.1875	124.2772	mk	2.25	
625	532.6	180.2478	mk	958	100.2088	mk	2.4	
750	663.5425	156.7345	mk	1.20E+03	86.71725	mk	2.6	
875	791.7059	136.4143	mk	1.38E+03	78.27221	mk	2.7	
1000	915.2353	120.1877	mk	1.50E+03	73.11399	mk	2.75	

Detail for previous slide. Demonstrates that gains are available that meet required signal to noise at single pixel level. Required is < 200 mK.